72 research outputs found

    Ghrelin increases intake of rewarding food in rodents

    Get PDF
    We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS-R1A) and rats treated peripherally with a GHS-R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS-R1A knockout mice. Acute bilateral intra-VTA administration of ghrelin increased 1-hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA-lesioned rats had normal intracerebroventricular ghrelin-induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS-R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food

    Monoclonal antibody targeting of fibroblast growth factor receptor 1c ameliorates obesity and glucose intolerance via central mechanisms.

    Get PDF
    We have generated a novel monoclonal antibody targeting human FGFR1c (R1c mAb) that caused profound body weight and body fat loss in diet-induced obese mice due to decreased food intake (with energy expenditure unaltered), in turn improving glucose control. R1c mAb also caused weight loss in leptin-deficient ob/ob mice, leptin receptor-mutant db/db mice, and in mice lacking either the melanocortin 4 receptor or the melanin-concentrating hormone receptor 1. In addition, R1c mAb did not change hypothalamic mRNA expression levels of Agrp, Cart, Pomc, Npy, Crh, Mch, or Orexin, suggesting that R1c mAb could cause food intake inhibition and body weight loss via other mechanisms in the brain. Interestingly, peripherally administered R1c mAb accumulated in the median eminence, adjacent arcuate nucleus and in the circumventricular organs where it activated the early response gene c-Fos. As a plausible mechanism and coinciding with the initiation of food intake suppression, R1c mAb induced hypothalamic expression levels of the cytokines Monocyte chemoattractant protein 1 and 3 and ERK1/2 and p70 S6 kinase 1 activation

    Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity.

    Get PDF
    The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress

    Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance

    Get PDF
    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress

    Growth Hormone and Melanin-Concentrating Hormone receptor in the regulation of energy balance and metabolism

    Get PDF
    Energy homeostasis – the balance of energy intake, expenditure, and storage – is controlled by autonomic regulation originating in the hypothalamus and the brain stem, which receive input from the periphery. Upon receiving signals from the periphery, centres in the central nervous system (CNS) react through endocrine or neuronal responses to maintain a steady balance. Growth hormone (GH) and melanin-concentrating hormone (MCH) act in the CNS to influence the energy balance and may be connected to the peripheral signals ghrelin and leptin. The overall aim of this thesis was to investigate how these different hormonal systems interact. To investigate the metabolic role of GH in the CNS, transgenic mice that overexpress bovine GH in the CNS (GFAP-bGH) were studied. GFAP-bGH mice have higher food intake and body weight and are obese compared with wild-type (WT) mice. Moreover, GFAP-bGH mice had hyperinsulinemia, pancreas islet hyperplasia, and dyslipidemia, but no changes in energy expenditure were observed. Thus, GH is an orexigenic signal in the CNS that leads to obesity and alters insulin and blood lipid profiles. Mice deficient in the gene encoding GHr (GHr KO) were injected in the CNS with ghrelin to study whether the orexigenic signal from ghrelin is dependent on functional GH signalling. The stimulatory effect of ghrelin on food intake was blunted in GHr KO mice, which suggests that the effects of ghrelin on food intake involve the central GH/GHr system. Furthermore, GHr KO mice were growth retarded and obese with higher leptin and corticosterone levels, low insulin and glucose levels and altered circulating lipids. Functional GH signalling is thus required for normal carbohydrate metabolism and lipid biology. The orexigenic neuropeptide MCH may also be involved in ghrelin-induced food intake and GH secretion. Food intake of mice that were deficient in the gene encoding MCHr (MCHr KO) and were injected in the CNS with ghrelin was similar to that of ghrelin injected WT mice, which suggests that MCHr is not required for the stimulating effect of ghrelin on food intake. But ghrelin had no effect on pituitary GH expression in MCHr KO mice, which suggests that MCHr is involved in ghrelin-mediated GH expression. Furthermore, MCHr is important for the acute effect of intracerebroventricular ghrelin on serum insulin but not on corticosterone levels. Thus, functional MCHr is required for the effects of ghrelin on GH expression and insulin secretion. Since leptin and MCH act in common pathways in the hypothalamus to regulate energy balance, leptin-deficient MCHr KO (MCHr KO ob/ob) mice were studied to investigate the importance of MCHr on the phenotype of ob/ob mice. MCHr KO ob/ob mice were similar to ob/ob mice concerning body weight, food intake, hepatic steatosis, blood lipid profile, and energy expenditure. But normal glucose tolerance and markedly reduced insulin levels were observed in MCHr KO ob/ob mice, indicating improved insulin sensitivity. MCHr KO ob/ob mice had higher locomotor activity, improved core body temperature regulation, and reduced corticosterone levels. Thus, MCHr may be involved in direct or secondary signalling cascades that lead to changes in insulin sensitivity, locomotor activity, and blood serum parameters. In conclusion, GH and MCHr play important roles in the CNS in regulating energy balance, including effects on food intake, body weight, obesity, and circulating endocrine signals

    Deletion of Gpr55 Results in Subtle Effects on Energy Metabolism, Motor Activity and Thermal Pain Sensation.

    No full text
    The G-protein coupled receptor 55 (GPR55) is activated by cannabinoids and non-cannabinoid molecules and has been speculated to play a modulatory role in a large variety of physiological and pathological processes, including in metabolically perturbed states. We therefore generated male mice deficient in the gene coding for the cannabinoid/lysophosphatidylinositol (LPI) receptor Gpr55 and characterized them under normal dietary conditions as well as during high energy dense diet feeding followed by challenge with the CB1 receptor antagonist/GPR55 agonist rimonabant. Gpr55 deficient male mice (Gpr55 KO) were phenotypically indistinguishable from their wild type (WT) siblings for the most part. However, Gpr55 KO animals displayed an intriguing nocturnal pattern of motor activity and energy expenditure (EE). During the initial 6 hours of the night, motor activity was significantly elevated without any significant effect observed in EE. Interestingly, during the last 6 hours of the night motor activity was similar but EE was significantly decreased in the Gpr55 KO mice. No significant difference in motor activity was detected during daytime, but EE was lower in the Gpr55 KO compared to WT mice. The aforementioned patterns were not associated with alterations in energy intake, daytime core body temperature, body weight (BW) or composition, although a non-significant tendency to increased adiposity was seen in Gpr55 KO compared to WT mice. Detailed analyses of daytime activity in the Open Field paradigm unveiled lower horizontal activity and rearing time for the Gpr55 KO mice. Moreover, the Gpr55 KO mice displayed significantly faster reaction time in the tail flick test, indicative of thermal hyperalgesia. The BW-decreasing effect of rimonabant in mice on long-term cafeteria diet did not differ between Gpr55 KO and WT mice. In conclusion, Gpr55 deficiency is associated with subtle effects on diurnal/nocturnal EE and motor activity behaviours but does not appear per se critically required for overall metabolism or behaviours

    Metabolic parameters and emotionality are little affected in G-protein coupled receptor 12 (Gpr12) mutant mice

    Get PDF
    Background: G-protein coupled receptors (GPR) bear the potential to serve as yet unidentified drug targets for psychiatric and metabolic disorders. GPR12 is of major interest given its putative role in metabolic function and its unique brain distribution, which suggests a role in emotionality and affect. We tested Gpr12 deficient mice in a series of metabolic and behavioural tests and subjected them to a well-established high-fat diet feeding protocol. Methodology/Principal Findings: Comparing the mutant mice with wild type littermates, no significant differences were seen in body weight, fatness or weight gain induced by a high-fat diet. The Gpr12 mutant mice displayed a modest but significant lowering of energy expenditure and a trend to lower food intake on a chow diet, but no other metabolic parameters, including respiratory rate, were altered. No emotionality-related behaviours (assessed by light-dark box, tail suspension, and open field tests) were affected by the Gpr12 gene mutation. Conclusions/Significance: Studying metabolic and emotionality parameters in Gpr12 mutant mice did not reveal a major phenotypic impact of the gene mutation. Compared to previous results showing a metabolic phenotype in Gpr12 mice with a mixed 129 and C57Bl6 background, we suggest that a more pure C57Bl/6 background due to further backcrossing might have reduced the phenotypic penetrance

    Validation of whole genome amplification for analysis of the p53 tumor suppressor gene in limited amounts of tumor samples.

    No full text
    Personalized cancer treatment requires molecular characterization of individual tumor biopsies. These samples are frequently only available in limited quantities hampering genomic analysis. Several whole genome amplification (WGA) protocols have been developed with reported varying representation of genomic regions post amplification. In this study we investigate region dropout using a φ29 polymerase based WGA approach. DNA from 123 lung cancers specimens and corresponding normal tissue were used and evaluated by Sanger sequencing of the p53 exons 5-8. To enable comparative analysis of this scarce material, WGA samples were compared with unamplified material using a pooling strategy of the 123 samples. In addition, a more detailed analysis of exon 7 amplicons were performed followed by extensive cloning and Sanger sequencing. Interestingly, by comparing data from the pooled samples to the individually sequenced exon 7, we demonstrate that mutations are more easily recovered from WGA pools and this was also supported by simulations of different sequencing coverage. Overall this data indicate a limited random loss of genomic regions supporting the use of whole genome amplification for genomic analysis
    corecore